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Determining protein function is one of the most challenging
problems of the post-genomic era. The availability of entire
genome sequences and of high-throughput capabilities to
determine gene coexpression patterns has shifted the research
focus from the study of single proteins or small complexes to
that of the entire proteome1. In this context, the search for
reliable methods for assigning protein function is of primary
importance. There are various approaches available for deducing
the function of proteins of unknown function using information
derived from sequence similarity or clustering patterns of co-
regulated genes2,3, phylogenetic profiles4, protein-protein
interactions (refs. 5–8 and Samanta, M.P. and Liang, S.,
unpublished data), and protein complexes9,10. Here we propose
the assignment of proteins to functional classes on the basis of
their network of physical interactions as determined by
minimizing the number of protein interactions among different
functional categories. Function assignment is proteome-wide
and is determined by the global connectivity pattern of the
protein network. The approach results in multiple functional
assignments, a consequence of the existence of multiple
equivalent solutions. We apply the method to analyze the yeast
Saccharomyces cerevisiae protein-protein interaction network5.
The robustness of the approach is tested in a system containing
a high percentage of unclassified proteins and also in cases of
deletion and insertion of specific protein interactions.

Two-hybrid experiments allow the reconstruction of the binary inter-
actions among a set of proteins in a given proteome5. Our approach
visualizes the protein-protein interaction data as a connectivity graph
in which the nodes represent the proteins and the edges represent
interactions among proteins11,12 (see Supplementary Fig. 1 online).
Here we explore the concept that interacting proteins may belong to at
least one common functional class, and thus knowledge of the func-
tional classification of a subset of the proteins involved in the network
may lead to an accurate prediction of the functional classification of
the remaining subset of uncharacterized proteins. In principle, every
protein could be assigned to one or more functional classes drawn
from a set of F possible classes. F is the total number of functions con-
sidered and depends on the functional classification scheme used. The
more stringent the definition of function used in the classification
scheme the greater the number F. Because the functional classification

for only a small subset of proteins has been characterized, there remain
many proteins for which a function σ, chosen among all F possible
functions, must still be determined.

A common approach involves assigning a function to an unclassi-
fied protein on the basis of the most common function(s) present
among the classified interacting proteins, also known as the ‘majority
rule’ assignment7,8. The majority rule derives from the empirical
observation that 70–80% of interacting protein pairs share at least one
function. In most cases, however, only a few unclassified proteins
interact with more than one protein of known function13. In addition,
in these few cases, the interacting proteins with known functions do
not generally share functionalities (Fig. 1). In this respect, the majority
rule assignment is inconclusive because the analysis does not include
the links among proteins of unknown function. The result is that
much of the information contained in a reconstructed protein-protein
interaction network is not used. More importantly, the final configura-
tion of functions assigned to unclassified proteins should be consistent
with the rules used to determine the functions themselves. An unclas-
sified protein with one or more unclassified partner(s) must be
assigned functions that are consistent with those assigned to its unclas-
sified partners. These constraints define a process by which assign-
ment of function to an unknown protein influences the majority rule
assignment in a self-consistent and iterative manner.

The functional prediction strategy described here is based on global
optimization principles. A score that counts the number of interacting
partners with the same functional assignment (see Methods section
for details) is associated to any given assignment (configuration) of
functions for the whole set of unclassified proteins. The score is lower
in configurations that maximize the presence of the same functional
annotation in interacting proteins. The contribution to the total score
of a given functional assignment is computed from the number of
classified and unclassified neighbor proteins with that function.
Hence, determination of the functions of all unclassified proteins in a
network becomes a global optimization problem that can no longer be
solved on the basis of the local environment . The optimal function
assignment corresponds to the configuration of the lowest score for
the whole network. In statistical mechanics, this corresponds to mini-
mizing the energy of a Pott’s model with nonhomogeneous boundary
conditions14, the latter being represented by the proteins with known
function. The resulting computational problem is ‘frustrated’—that is,
it has no single solution because of the improbability of satisfying all
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L E T T E R S

the constraints imposed by classified proteins on their interacting,
unclassified partners. Instead, multiple equivalent or nearly equivalent
optimal solutions are generated that contain a minimal amount of
interacting proteins with different functions. The existence of multiple
solutions allows the objective assignment of multiple functions to
most unclassified proteins (Fig. 1). Depending on the complexity of
the underlying graph and on the boundary conditions, the score mini-
mization represents a complicated computational task. In instances of
this type, a ‘simulated annealing’ technique16 (see Methods section)
would be an appropriate tool to obtain the optimal solutions. Indeed,
the optimization procedure is repeated several times to account for the
nonuniqueness of the optimal configurations, and a functional classi-
fication prediction is made by taking those functions that occurred
more often for each unclassified protein in the whole set of simulated
annealing processes.

We have applied the functional prediction method outlined to the
analysis of the yeast S. cerevisiae protein-protein interaction network.
The interaction data were obtained from Schwikowski et al7. and con-
tain N = 1826 proteins with E = 2238 identified interactions. The func-
tional classification was obtained from the MIPS database15. The
MIPS classification scheme contains F = 424 functional categories,
plus two categories for proteins with no assigned function: ‘CLASSIFI-
CATION NOT YET CLEAR-CUT’ and ‘UNCLASSIFIED PROTEINS’.
The data contain n = 441 proteins in these two last categories. We used

our global optimization method to obtain the functional assignments
of all the proteins listed within these two categories. The complete set
of functional assignments can be found as Supplementary Table 1
online. For each unclassified protein we report its degree, that is, the
number of proteins directly connected to it and up to three of the most
probable predicted functions as determined with our method. We
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Figure 1 Illustration of the method. Subgraph of the protein interaction
network of the yeast Saccharomyces cerevisiae. Proteins in gray boxes are
unclassified (unknown function); the others are classified proteins (functions
in brackets) and are labeled according to the following criteria: 1, cell
growth; 2, budding, cell polarity and filament formation; 3, pheromone
response, mating-type determination, sex-specific proteins; 4, cell cycle
checkpoint proteins; 5, cytokinesis; 6, rRNA synthesis; 7, tRNA synthesis;
8, transcriptional control; 9, other transcription activities; 10, other
pheromone response activities; 11, stress response; 12, nuclear organization.
Given one of these proteins of unknown function, if we take as a prediction
the function that appears more often in the neighbor proteins of known
function, then we obtain the following classification (from top to bottom)
YNL127W (2), YDR200C (3,4,10) and YLR238W (12). Our method,
however, considers also the interactions among unclassified proteins. If we
iterate once more the ‘majority rule’ by taking into account the interactions
among the three unclassified proteins, we obtain the following classification:
YNL127W (2,4), YDR200C (3,4,10) and YLR238W (12). This way we
determined another possible function for YNL127W.
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Figure 2  Statistical reliability of the method. (a) Self-consistency test. The
success rate of the method after a fraction fn of classified proteins has been
unclassified. Each point represents the probability that the functional
classification of proteins with k interacting partners, defined here as the top
ranking for occurrence in the list of putative functions generated by our
method, coincides with their real classification. We report the success rate
for the values fn = 0.4 and fn = 0.7 in the upper and lower curve, respectively.
The prediction quality for poorly connected nodes (degrees 1 and 2)
decreases to just 30%, and it is degrading more rapidly than for highly
connected proteins. This is because the corresponding proteins occupy a
very marginal position in which the method cannot take full advantage of 
the global connectivity properties of the graph. In the inset we report the
data for fn → 0, that is, when only a single protein is set unclassified. 
In this case it is possible to see that even for poorly connected proteins the
method gives a very good statistical reliability of the corresponding
predictions. (b) Tolerance to errors. Overlap of all Θi(fl) averaged over all
unclassified proteins between the functional predictions obtained using the
original network and another with a degree of dissimilarity fl defined as the
percentage of edges between protein couples that are different in the two
networks. The analysis shows that a moderate amount of misplaced
interactions do not preclude a reliable function assignment. Higher numbers
of errors lower the overlap, signaling that the two networks provide rather
different configurations of functional assignment. The curve shows a
decreasing linear trend that when extrapolated to fl = 1 gives a predictably
small value of the overlap (<15%). Extrapolation to fl = 1 is inappropriate
because a complete dissimilarity between the original and the scrambled
network is hardly achievable by a random rewiring, and therefore unjustified
in the present context.
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L E T T E R S

attribute a higher level of ‘certainty’ to those functions with a higher
percentage of occurrences.

A fundamental issue concerning protein function prediction is the
assessment of the method reliability in light of the incomplete knowl-
edge of the interaction network. To determine the confidence limit of
the method, we determined the rate of successful predictions attained
for a fraction fn of classified proteins that were analyzed as unclassified
proteins. This way we obtained a quantitative estimate of the reliability
of our predictions as a function of the amount of information avail-
able about the network. We show graphically (Fig. 2a) the rate] of suc-
cessful predictions as a function of the degree (number of interacting
partners) of the proteins for different values of fn using the most strin-
gent functional classification scheme available (424 functional
classes). For unclassified proteins with degree larger than 2, a correct
prediction can be made between 60 and 70% of the time, independ-
ently of the degree of the protein involved in the prediction, and
despite the loss of a substantial part of information on known classifi-
cations (up to fn = 0.4). A brief examination of Supplementary Table 2
online will permit a visual inspection of the test for fn = 0.4. A quanti-
tative account of the better performance of our method with respect to
local optimization methods is presented in Table 1, where we also
report predictions obtained with a coarser classification scheme. The
more coarse-grained the classification, the higher the success rate. Not
surprisingly, adopting a coarser classification scheme leads to an
increase of the various rate of success (last column), because the num-
ber of degrees of freedom the method must deal with is drastically
reduced. This has to be balanced with the parallel diminution of the
information content of predictions. These results demonstrate the
considerable and robust predictive power of this statistical method,
even with a reduced amount of information (larger number of unclas-
sified proteins).

A concern in implementing network-based predictive methods is
the topological accuracy of the protein network. It is known that
protein-protein interaction data obtained from two-hybrid experi-
ments contain a certain number of false positive and negative results
that could, in principle, compromise the quality of the predictions by

incorporating spurious connectivities into the network (false or
missing edges). The effect of this uncertainty on prediction accuracy
can be modeled by ‘rewiring’ a certain fraction of protein interac-
tions—that is, removing every reported interaction with a probabil-
ity q and drawing new interactions among proteins that do not
interact according to the available data. Thus we obtain a new net-
work that is dissimilar to a certain degree, depending upon q, from
the original one. The degree of dissimilarity fl is measured as the per-
centage of edges between protein pairs that are different in the two
networks, the original and the scrambled one. Note that moving one
link in general implies that the connectivity pattern of four nodes is
affected and that fl thus has a nontrivial dependence on q. We imple-
mented our method on the modified network, determining a new list
of putative functions for each unclassified protein, together with the
relative probability (or frequency) of occurrence of the putative
functions themselves. For convenience we imagine these lists (one
for each unclassified protein) to contain all possible functions, and
associate a zero probability to those functions that have never
occurred in the implementation of the method. We call pis(fl) the
probability that the unclassified protein i belongs to the functional
class s, in the network with a degree of dissimilarity fl with the original
one. The case pis(0) then corresponds to the functional classification
obtained using the original network. A quantitative comparison with
the predictions made using the original network is provided by the
overlap function Θi(fl) defined as follows: Θi(fl) = Σs [pis(0)pis(fl)]1/2,
which equals 1 when pis(fl) = pi(0) for all s. We compute the average
of Θi(fl) restricted to unclassified proteins with k interacting part-
ners, and observe that it varies little with the node degree. We plot
the average of Θi(fl) over all unclassified proteins as a function of fl
(Fig. 2b). For a 10% dissimilarity, the overlap is ∼0.85%. Because
each displaced edge corresponds to three to four proteins with differ-
ent interactions, this plot shows that even if ∼30–40% of proteins
have at least one misplaced interaction due to erroneous experimen-
tal results, the determination of the proteins’ functions can still be
effective. Of course higher levels of errors decrease the overlap, sig-
naling that the two networks provide rather different configurations
of functional assignment.

The method we propose can be used as a general tool for the assign-
ment of protein function and demonstrates that protein-protein inter-
action data can be an effective framework to deduce the function of
unclassified proteins. The method also allows determination of multi-
ple functions and takes into account self-consistently the effect of
unclassified proteins in the final assignment configuration. Finally, the
validity tests conducted show that the method tolerates the inherent
imperfection and the incomplete nature of the protein networks.

METHODS
A function σi chosen among the F (F = 424 in the finest MIPS classification
scheme) possible ones is assigned to each unclassified protein i = 1, 2, ..., n, to
globally minimize the following score function:

E = –Σi,j Jij δ(σi,σj) – Σi hi(σi) (1)

where Jij is the adjacency matrix of the interaction network for the unclassified
proteins (Jij is equal to 1 if protein i and j interact and are unclassified, 0 other-
wise), δ(i,j) is the discrete δ function and hi(σi) is the number of classified part-
ners of protein i with function σi.

The majority rule5,6 seeks to minimize only the second term on the right-
hand side of equation (1). This can be achieved with local methods (that is,
considering successively and independently each protein). Here, the contribu-
tion to the total score of assigning a protein i to functional class σi depends also
on the assignment made for all other proteins, resulting in a more complicated
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Table 1  Success rates for global optimization versus majority rule

K nk MR1 GO1 GO2

2 328 0.40 0.46 0.61

3 205 0.55 0.65 0.76

4 102 0.60 0.62 0.77

5 72 0.58 0.66 0.86

6 41 0.66 0.74 0.89

7 28 0.58 0.67 0.94

k >7 85 0.69 0.74 0.94

Comparison of the success rate of the global optimization (GO) method proposed
here and the majority rule (MR). To compute the success rate, we assume that a
fraction fn = 0.4 of the classified proteins are unclassified and then make
functional predictions for them. The success rate is defined as the probability
that the most ranked predicted function is the actual functional classification for
the corresponding protein. Two different levels of functional classification have
been used. In the finest level (1) we have taken the most stringent classification,
containing 424 functional categories. In the coarse-grained level (2) we have
taken the less detailed classification (metabolism, energy, cell growth and
division, etc.), containing 20 functional categories. We show the success rate as
a function of the number of interacting partners k (as a reference we also show
how many proteins nk have k interacting partners). The case k = 1 is not
considered because the MR method finds only a trivial implementation in this
case. The comparison of the values for k ≥ 2 clearly indicates that the GO
method is more effective, with a higher percentage of correct predictions.
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L E T T E R S

computational task. The advantage is that the underlying requirement that
‘interaction requires a common function’ is applied also to interactions
between formerly unclassified proteins, information that is ignored in the
majority rule approach.

To overcome the computational difficulties and find the configuration or
configurations that minimize E, we conduct simulated annealing16 introduc-
ing an effective temperature T. We start with an initial random configuration
σi. Then, at each Monte Carlo step, we select one protein at random and
change its state from σi to σ’i, where σ’i is selected at random among the possi-
ble states of protein i with the constraint σ’i ≠ σi. We then compute the score
difference ∆E = E’ – E between these two configurations. If ∆E ≤ 0, we accept
the new configuration. If ∆E > 0, we accept the new configuration with proba-
bility r = exp(–∆E/T) or keep the original configuration with probability 1 – r.
This Monte Carlo step is repeated until E reaches a stationary value.
Thereafter, T is decreased by a small amount (for the simulations presented
here, the inverse of T was increased at constant steps of size 0.01; no significant
difference was observed for smaller increments). These two processes, equili-
bration at a given T and decrease of T, are repeated until the protein states sta-
bilize. These protein states become the predicted functional classification.
Because the minimum energy solution is not unique, the simulated annealing
process is been repeated several times and starting from different initial con-
figurations (100 times for the simulations presented here; no significant
change was observed for a larger number of realizations). Finally, we com-
puted the fraction of times (pis) the protein i was observed in the final state s,
which gives us an estimate of the probability that protein i belongs to the func-
tional classification s.

Note: Supplementary information is available on the Nature Biotechnology website.
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